
Learning Design from Emergent Co-Design: Observed
Practices and Future Directions

Ingbert R. Floyd
Graduate School of Library and Information

Science
University of Illinois at Urbana Champaign

Champaign, IL 61820 USA
ifloyd2@illinois.edu

Michael B. Twidale
Graduate School of Library and Information

Science
University of Illinois at Urbana Champaign

Champaign, IL 61820 USA
twidale@illinois.edu

ABSTRACT
In everyday work environments, systems for work evolve
constantly in response to changing environments, the need
to overcome technical and social obstacles, or out of the
desire by individuals to try something new or satisfy their
curiosity. This proposal briefly reviews some emergent
design activities, namely patchwork prototyping and a
recent trend in academic computing for adopting and
modifying open-source software. On the basis of this past
work, the authors provide suggestions for future research
on how design activity by both professional and amateur
designers can be studied to inform both the design of
systems to support co-design, and to learn better about how
to do intentional design.

Keywords
Participatory design, patchwork prototyping, open-source
software, emergent design, intentional design

INTRODUCTION
Design research, whether exploring co-design or other
forms of design, typically focuses on intentional design:
cases where a company, a manager, or a developer design a
system, product, or service to solve a particular or imagined
need [1]. Yet in everyday work environments, systems for
work evolve constantly in response to changing
environments, the need to overcome technical and social
obstacles, or out of the desire by individuals to try
something new or satisfy their curiosity. Typically, this
evolution occurs when individuals or groups develop work-
arounds to deal with limitations in existing work-flow
systems [6], when they adopt new technologies or practices
which they find satisfy a particular need (better), when they
appropriate existing technologies to satisfy a need [4], or
when they innovate with their existing work-flows to make
the process more effective or efficient. Thus, the evolution
consists of changing work practice, which is motivated by
and has consequences for technology use, workplace

culture, the effectiveness of policies, etc., a classic example
of the task-artifact cycle [3].
This evolution often is reactive and ad-hoc in nature, and
while it does involve conscious decisions, these decisions
are variable in their reflectiveness, and are typically made
by people who are not professional designers, in contexts
where they might not consider their decisions to be design-
oriented, despite the fact that professional designers would.
This reactive, in-situ designing takes many forms, but it is
almost always sociotechnical in nature. The actions
involving technologies can take various forms, e.g.:
copying-and-pasting data from one application to the next
[12], tailoring or tweaking existing applications, cobbling
together different pieces of computing and analog
technology via bricolage [2,9]; and if the person's skill level
is high enough it can involve programmatic customization
of the technology. Yet these activities inevitably also
involve other actions, e.g.: negotiating a new work-flow
pattern with co-workers, appealing to a superior to change
organizational policy, recruiting a co-worker to teach them
how to use a promising technology, etc.
Emergent, ad-hoc design often occurs by trial-and-error
experimentation informed by previous experience and
conversations with colleagues—frequently conversations
which happen serendipitously. The consequence is that
work systems are remarkably robust because workflows are
constantly evolving to adjust to changing circumstances,
individuals are constantly innovating to maintain them, and
they are not fixed by policy, a particular technology
structure, etc. The flexibility and informality of this
emergent design is its strength, which is important to keep
in mind when trying to support it via intentional design for
co-design. Yet, that does not mean that the professional
designer has no place for aiding and abetting this process.
The innovation that can occur via this reactive, ad-hoc
design is limited by the imagination of the amateur
designer(s), by their technical expertise, and by the
constraints on the mutability of the technology. Thus the
professional designer can contribute design expertise, a
knowledge of the possibilities of what technology can
support, and the skill to construct technology which the
amateur designer can envision but not create. For these

Position paper presented at the Designing for Co-
designers Workshop held October 1st 2008 in conjunction

with the Participatory Design Conference 2008.
Bloomington, Indiana. Workshop documentation

available online at: http://mlab.taik.fi/co-design-ws/

contributions to be effective and to preserve the creative
robustness of the natural ad-hoc design, an environment of
true on-going co-design must be created.
To explore how to create such an environment, we consider
two kinds of emergent, on-going co-design that we have
observed. By emergent, we mean they were not planned;
they evolved in response to the circumstances of the
organizations in which they occurred. These projects
exhibit a co-design via bricolage that is different from what
[2] describes due to new technological capabilities. An
analysis of these co-design processes leads to implications
for intentional design for co-design via bricolage.

EMERGENT CASES OF DESIGN FOR CO-DESIGN
We discuss two cases that involve co-design activity:
patchwork prototyping [5,8] and a recent trend in academic
computing that harnesses the power of free/libre open-
source software (FLOSS). Our focus in this discussion is
not on the details of the processes, but rather on how the
structures of the various design environments enable
serious co-design activities to occur, in the hopes that this
will inform more intentional design for co-design.

Patchwork Prototyping
Patchwork prototyping (discussed extensively elsewhere
[5,8]) is an emergent design method that we have observed
develop independently in several different projects. The
essence of the method is that many different FLOSS
applications are patched together with minimal glue code
(at times nothing more than hyperlinks) by professional
developers to create high-fidelity prototypes which can be
rapidly iterated to explore a design space, and which are
tested by having actual users incorporate the prototypes
into their daily work activity. These prototypes are
sometimes augmented using web APIs, but are much more
complex than typical mash-ups. Radical iterations can
happen in time-spans of less than a week because entire
FLOSS applications can be added or removed from the
prototype, or the features which are exposed can be altered
simply by changing the configuration files. The key to the
method is that it involves extensive collection of feedback
on the design by project leaders who come from the user
community, and thus understand the needs of different user
groups much better than the professional designers and
developers. It is a method for requirements gathering, not
for production-scale systems development, but the
transition from prototype to production-scale system can be
relatively seamless as the modularity of the prototype
affords incremental substitution of production-scale code.
What is interesting about patchwork prototyping is that we
have seen it develop as an emergent method in several
different projects. While the end result is very participatory
in nature, none of the designers or developers in the
individual projects came from the co-design tradition,
although a few individuals had superficial knowledge about
the tradition. Supplementary to our observations, we have
anecdotal evidence that the method seems to emerge
repeatedly. This is likely due to its pragmatic resolution of

the requirements gathering problem, and ease of supporting
real user participation in actual use of the evolving
prototype.
The traditional software development literature considers
the choice between high-fidelity prototyping and rapid
prototyping to be one of the fundamental trade-offs a
design team has to negotiate at different times in the design
process [10]. Patchwork prototyping seems to bypass this
tradeoff. Therefore, what is it about the current software
development environment that facilitates this kind of
activity?
One of the primary reasons we believe patchwork
prototyping has only emerged recently as a design method
is the emergence of more and more high-quality FLOSS.
These applications are feature-rich with many customizable
options, and have benefited from cycles of use and
feedback over time.
The free as in beer nature of the software is important, in
that it keeps prototyping costs down, however the openness
of the code is what is more important, because the software
can be customized for the purpose of prototype
development, and thus developers can help users explore
the design space by presenting different versions of the
functionality in quick succession. This prevents situated use
lock-in; users becoming too comfortable with any
particular instance of the interface; and so reluctant to
change. These rapid changes also give users the
opportunity to get a more visceral feel for the design space
of computational possibilities. For example, in hopes of
satisfying a particular need, introducing a group to a single
wiki software implementation which the users find
distasteful can lead users to dismiss wikis as a technology
when in fact it is simply a poor implementation of wiki
functionality or interface which they are responding to.
However, iterating with a second or even a third wiki
implementation not only can lead immediately to a desired
solution, but can also give the non-technical user a better
sense of, in this case, the rather abstract concept of
"wikiness". Developing this understanding of the design
space is important for users who do not have the same
computational sense [13] as experienced computer users or
computer programmers.
Patchwork prototyping is not just a result of the
technological environment, however; it is also a product of
various values and attitudes present in the organization.
The approach aligns well with the software engineering
value of code reuse over building from scratch wherever
possible. However, developer attitudes alone are
insufficient to support patchwork prototyping as a method.
As noted earlier, the project leadership (design team
leadership) in these patchwork prototyping projects always
includes (if is not wholly composed of) leaders of the future
users. These leaders were advocates for using the prototype
iterations, and led by example. This had many components
including establishing a clear understanding of the need,
and a vision for the possibility offered by innovative

software, even if they did not necessarily know in advance
what would emerge out of the process. They were invested
in using the results of the project, and in addition had the
attitude that their job was to get the software or service
working.
Finally, the intended users of the product must have an
ethic of participation [7]. When patchwork prototyping
occurs, there exists a general recognition that these projects
are for the mutual good (nobody's going to be put out of
work by them, you're job's just going to be easier if it
works). Thus users are willing and happy to provide
feedback to the design team, as long as it does not take too
much of their time (and as long as they are reminded to do
so). Typically, this is either because the users have joined
the project in order to benefit from the software, or because
trusted technology support personnel are developing the
project in-house.

OSS in Academic Computing
In academic computing environments, resources to build
custom software is often unavailable, and many
commercial off-the-shelf (COTS) solutions are insufficient
for the unit's needs. In the past, academic units typically
had to settle for COTS software that they could bricolage
[2,9] together, or would deal with poor quality custom
software that required many man-hours to work around,
since labor in these organizations is often less expensive
than professional software customization. However, these
solutions created frustrating working environments, very
inefficient workflows, resentment by users to management
and IT staff for providing such poor solutions, and
resentment by managers to vendors due to false promises.
Recently we have noted academic units, including our own
school and the main library on campus, deciding to spend
resources on people and skills, and not on software and
software licenses. They look for FLOSS solutions for a
computing need, such as digital library software, e-learning
software, and content management systems. As long as
FLOSS solutions are not significantly worse than COTS
solutions, the FLOSS is adopted to solve the computing
need, and professional software developers are hired to
modify the FLOSS to better fit the needs of the academic
unit. Furthermore, these developers are encouraged to join
the FLOSS development teams so as to contribute back to
the FLOSS community the code modifications,
customizations, or improvements that the developers
needed to make anyway. This kind of development not only
happens on a local level, but is also starting to be embraced
by inter-university consortia. In order to refer to this
phenomenon more efficiently, we will refer to it henceforth
as academic development of FLOSS (ADF).
The reasons we believe ADF to have started occurring are
in part the same reasons for patchwork prototyping's
occurrence. First, the availability of good quality FLOSS is
important. For academic institutions, the FLOSS does not
need to be production-scale, but it does need to be designed
to evolve into production-scale software. These institutions

even embrace imperfect software because they are willing
to hire developers to improve the software, and customize it
to their needs. However, the decision to adopt FLOSS vs.
COTS often hinges on the availability of one or more
critical features: the modularity of the software, the ability
to create multiple instances of the software from a single
management back-end (reducing administrative overhead),
the openness of the FLOSS developers to accepting code
modifications and new features, and source code which is
clean enough and structured in such a manner that
modifications are not very difficult to make (e.g.:
functionality is generally not hard-coded). The latter feature
is particularly important because the developers these
institutions hire are often working on 3-5 different projects,
and sometimes even more, so the time they can spend on
ADF projects is very limited.
The success of ADF also depends on the fact that the
developers are bona-fide members of the user communities.
The developers may or may not be actual users of a
particular software application, but they are embedded in
the community that uses it, and thus they are in a position
to know what their community needs better than any
outside developer can. This also means that the developers
are most interested in supporting the needs of their user
communities. As a result, not only can the developers
represent their academic community's needs to the FLOSS
development community, but also their development efforts
are geared at serving real user needs.
This process is strengthened further by the way that
collecting feedback is built into all of these development
efforts. In all of the academic units in which we have
observed ADF, the developers are not leading the efforts.
Rather, the administration of the units lead the efforts, and
collecting feedback on user experiences, soliciting requests
for features and functionality, and observing user behavior
are explicitly treated as core activities in the development
process. Thus there is a feedback loop in place where
people try out the new systems, experience using them, and
provide feedback based on authentic use.

INTENTIONAL DESIGN FOR CO-DESIGN
The two examples of environments enabling on-going co-
design seem to have certain features in common. First, it is
important for intended users to have the opportunity to try
out technology in their everyday work activities. It is only
by using technologies in authentic settings that most users
can provide meaningful feedback, and can develop a sense
of what is technologically possible.
Second, the collection of feedback facilitated by leaders of
the user community is important, (a) because they are in a
position of authority where their requests are more likely to
be heeded, and (b) because they know the needs and
language of their community better than a developer who is
primarily in a support role. Thus, they can obtain and
translate feedback into a form that is useful for developers.
Third, there needs to be a culture of trust where both
designers and managers are seen as making good-faith

efforts to improve the work environment, and enable users
in new ways.
Fourth, the technologies used to support co-design must be
structured to allow modification and customization. Open
source, modularity in design, clean source-code, and other
technological features mentioned above are unlikely to be
the only factors. Examining how various features of
technology and software enable and disable co-design over
time is another promising area for future research.
However, these examples also make clear that successful
co-design happens only because of a potent sociotechnical
cocktail of technological affordances, workplace values,
institutional policy, and user trust, and the nature of the
ingredients can vary a great deal from environment to
environment. Because there is no one "right" mix,
searching for "best practices" is as quixotic an endeavor as
seeking to create ideal technologies that will always
support co-design. Thus, one of the major lessons of the
above examples is that we need to study the mechanisms by
which the different ingredients of various successful
cocktails interact to produce on-going co-design.

Extrapolated Implications for Designing for Co-Design
Thinking critically on our experience and the design
literature has also led us to consider ad-hoc design and its
implications in general. Most ad-hoc design does not
involve much reflection. It is a side project, a distraction
from the "real" work that the individual wants to do.
Because they see it as a distraction, there are strong
pressures for satisficing [11] behavior to occur. Thus,
individuals are typically happy with any solution that
solves their problem, and they often take the first solution
they think of or encounter, implement it, and move on.
What is missing is a consideration of the consequences of
their decision, and the benefits that arise from considering
multiple solutions—i.e., the benefits that accrue from
exploring a design space.
Thus, when designing for co-design, it seems it would be
productive to consider ways in which individuals engaging
in reactive design can encounter multiple solutions to their
problems without intentional effort on their part. This
might take the form of a social solution, where recreational
discussions about how people have overcome different
obstacles in their work are encouraged (i.e., people are
encouraged to complain about their problems and how they
solved them). Or it might take the form of a sociotechnical
solution where many different technologies and policies are
developed, and individuals can consult experts (perhaps IT
support professionals) about their different options. If
individuals routinely encounter creative emergent design
solutions in their everyday activities, then it becomes less
"work" to consider alternatives before implementing the
first thing that occurs to them. Similarly, if individuals are
encouraged to complain about how poor decisions made by
other individuals in the organization affect their work, a

greater awareness of the consequences of their own actions
can be fostered.

REFERENCES
1. Battarbee, K., Cabrera, A. B., Mattelmäki, T., Rizzo, F.

Designed for Co-designers. Proceedings of the
Participatory Design Conference, PDC 2008,
(Bloomington, IN, Oct. 2008), ACM Press.

2. Büscher, M., Gill, S., Mogensen, P., Shapiro, D.
Landscapes of Practice: Bricolage as a Method for
Situated Design. Computer Supported Cooperative
Work (CSCW), 10, 1 (2001), 1-28.

3. Carroll, J. M., Kellogg, W. A., Rosson, M. B. The Task-
Artifact Cycle. In: J. M. Carroll (Ed.) Designing
Interaction: Psychology at the Human-Computer
Interface. Cambridge University Press, 1991.

4. Eglash, R. Appropriating Technology: An Introduction.
In R. Eglash, J. Crossiant, G. Di Chiro, and R. Fouché
(Eds.) Appropriating Technology: Vernacular Science
and Social Power. University of Minnesota Press,
Minneapolis, MN, 2004.

5. Floyd, I. R., Jones, M. C., Rathi, D., Twidale, M. B.
Web Mash-ups and Patchwork Prototyping: User-driven
technological innovation with Web 2.0 and Open
Source Software. Proceedings of HICSS 2007 (2007).

6. Gasser, L. The integration of computing and routine
work. ACM Transactions on Information Systems, 4, 3
(1986), 205-225.

7. Greenbaum, J., Kyng, M. Introduction: Situated Design.
In J. Greenbaum and M. Kyng (Eds.) Design at Work:
Cooperative Design of Computer Systems. Lawrence
Erlbaum Associates, Hillsdale, NJ, 1991.

8. Jones, M. C., Floyd, I. R., Twidale, M. B. Patchwork
Prototyping with Open-Source Software. In St. Amant,
K. and Still, B. (Eds.) The Handbook of Research on
Open Source Software. Idea Group, Inc., PA, 2007.

9. Levi-Strauss, C. The Savage Mind. Translated by
George Weidenfeld and Nicolson Ltd. Oxford
University Press, Oxford, UK, 1996.

10. Rudd, J., Stern, K., Isensee, S. Low vs. high-fidelity
prototyping debate. Interactions, 3, 1 (1996), 76-85.

11. Simon, H. A. Invariants of Human Behavior. Annual
Review of Psychology, 41 (1990), 1-19.

12. Twidale, M.B. Over the shoulder learning: supporting
brief informal learning. Computer Supported
Cooperative Work, 14, 6 (2005), 505-547.

13. Twidale, M.B., Nichols, D.M. Computational Sense:
The Role of Technology in the Education of Digital
Librarians. To appear in The Encyclopaedia of Digital
Libraries. Idea Group Inc., 2008.

