
EG UK Theory and Practice of Computer Graphics (2007)
Ik Soo Lim, David Duce (Editors)

Scanline edge-flag algorithm for antialiasing

Kiia Kallio

Media Lab, University of Art and Design Helsinki UIAH

Abstract
In this paper, a novel algorithm for rendering antialiased 2D polygons is presented. Although such algorithms
do exist, they are inefficient when comparing to non-antialiased alternatives. This has lead to a situation where
the developers — and the end users of the applications — need to make a choice between high speed and high
quality. The algorithm presented here however equals the performance of an industry standard non-antialiased
polygon filling algorithm, while providing good antialiasing quality. Furthermore, the algorithm addresses the
requirements of a modern 2D rendering API by supporting features such as various fill rules. Most of the research
in antialiased 2D rendering has been proprietary work, and there is very little documentation about the algorithms
in the literature. This paper brings an update to the situation by providing a thorough explanation of one such
algorithm.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation;

1. Introduction

In the rendering of 2D vector shapes today — such as in
SVG [FFJ03] — the filling algorithm should be general (i.e.
support concave, self-intersecting polygons with holes), ef-
ficient, mathematically correct with subpixel accuracy, sup-
port even-odd and non-zero winding fill rules and high qual-
ity antialiasing, allow implementation also on mobile de-
vices with limited processing power [Cap03] and be suitable
for hardware implementation as well [Ric05].

The list of requirements is extensive, and the literature
lacks descriptions of such algorithms. Even if the importance
of antialiasing has been recognized years ago, lack of algo-
rithms that are efficient and simple to implement has lead to
the situation where antialiasing is considered as a costly ex-
tra feature. Even those applications that implement antialias-
ing need to sacrifice the quality for the sake of efficiency. In
this situation, antialiasing is not considered possible in low-
end graphics libraries, neither do developers — also on high-
end platforms — consider it feasible to implement on their
own.

2. Related work

The basis of the algorithm presented here is in the edge-flag
algorithm presented by Ackland et al. [AW81] in 1981. The

precise calculations required for subpixel accurate DDA im-
plementation are described by Hersch [Her88]. In addition
to the edge flag algorithm, there are other relevant polygon
filling algorithms described in the literature. Most notable is
the classic scan-line edge list algorithm [FvDFH90], a text
book example of polygon filling.

None of these algorithms directly handle various fill rules
required for rendering self-intersecting polygons. Neither
are they suitable for antialiased rendering, except when us-
ing regular supersampling, i.e. the image is rendered to a
bitmap with higher resolution and then scaled down with ap-
propriate filtering.

Antialiasing has been researched a lot in 3D graphics.
Typical solution for antialiasing in polygon-based 3D ren-
dering is full screen antialiasing, where basically the whole
frame buffer is rendered in higher resolution and then sam-
pled down. In practice this is more complex, for instance
multisampling is a method where the texturing and shading
is done only once per pixel while z-buffer operations are
done for each sample. With a suitable sampling pattern, a
relatively low amount of samples can provide adequate level
of antialiasing without sacrificing performance too much.

With the typical use cases of 2D vector graphics, for in-
stance text rendering or user interfaces, the requirements for
antialiasing are high. With 3D graphics, a lot of the detail in

c© The Eurographics Association 2007.



K. Kallio / Scanline edge-flag algorithm for antialiasing

the image comes from textures, and textures are antialiased
with pre-filtering. With 2D vector graphics, majority of the
detail comes from the geometry. The images are also often
high contrast — for instance black text with white back-
ground. This means that methods that produce accptable re-
sults with 3D don’t necessarily work for 2D vector graphics,
as the required amount of samples is higher.

In 3D rendering the texture data is already filtered, so
the higher sampling frequency is only needed at the poly-
gon edges. Some antialiasing approaches use this observa-
tion for calculating antialiasing only for the discontinuities.
Typically this is achieved by coverage masks, where the
blending of color values generated from different polygons
is required only if the coverage masks define partial fill area.
The A-buffer algorithm by Carpenter [Car84] is fundamen-
tal work in this area. The algorithm doesn’t handle trans-
parency and can produce artifacts with z-ordering, so later
the algorithm has been improved to support better sampling
scheme and transparency by Schilling et al. [SS93], Winner
et al. [WKP∗97] and Jouppi et al. [JC99]. The algorithm pre-
sented in this paper is related to these techniques and can be
also used for coverage mask generation.

It is also possible to approach the antialiasing problem by
calculating the coverages analytically instead of sampling.
When high antialiasing quality is required, sample-based
approaches easily get expensive considering the bandwidth
and memory usage. Also, even if the amount of samples is
very high, sample based approaches have always some up-
per limit where issues like moiré patterns or ringing become
visible. Sample based approaches merely shift these issues
to higher frequencies, but never get rid of them completely.

Analytical approaches on the other hand try to calculate
the exact pixel coverage of the polygon with mathemati-
cal analysis. The principal work in this area was done by
Catmull [Cat78] in the late 1970’s. Analytical approaches
produce higher amount of tones at the polygon edges and
don’t suffer from sampling artifacts. However, analytical ap-
proaches are typically computationally expensive by requir-
ing clipping at pixel level and between polygons. Analytical
approaches also easily suffer from problems with numerical
accuracy at the special cases, such as overlapping polygon
edges, thus being more difficult to implement in practice.

More recently for instance Loop et al. [LB05] and Qin et
al. [QMK06] have been using 3D shader hardware for ana-
lytical antialiasing. These experiments are however suitable
only for a limited set of use cases and can’t be extended to
support the requirements of a general rendering API.

In general, sample based approaches are more robust and
can handle things like self-intersecting shapes and exactly
matching polygon edges well without complex processing.
The algorithms also scale well to large amounts of polygon
data, since the amount of required storage depends on the
amount of pixels in the display buffer, not on the amount of

input data. These properties also make the algorithms easier
to implement in hardware.

3. The algorithm

This paper presents the algorithm in incremental order, start-
ing from a basic implementation and explaining the imple-
mentation of each feature one at the time.

The algorithm works in image space. This can be a tem-
porary canvas of the size of the filled area, or preferably a
one pixel high buffer that has the width of the scanline. To
better illustrate the basics of the algorithm, the approach us-
ing a temporary canvas is explained first. The algorithm uses
sample-based approach for antialiasing.

3.1. Basics of the algorithm

The algorithm is based on the edge-flag algorithm by Ack-
land et al. [AW81]. The edges of the polygon are first plotted
to a temporaray canvas by a complement operation. Then the
polygon is filled from left to right with a pen whose color is
toggled by reading the bits from the canvas. This is typically
done with a 1-bit per pixel offscreen bitmap. Figure 1 illus-
trates the filling operation with edge-flag algorithm.

Figure 1: A) Mark the edges B) Process the scanlines

3.2. Re-organizing the bitmap

The edge-flag algorithm was originally developed for hard-
ware implementation. Since the invention, there has been
implementations on low-cost commercially succesfull prod-
ucts as well, such as Commodore Amiga [Com89]. In hard-
ware, the access to individual bits can be done efficiently.
However, the software implementations of the edge-flag al-
gorithm have typically used the same screen buffer layout as
the hardware. With 1-bit bitmaps where each byte contains
an 8 pixel wide horizontal sequence, the processing either
involves table-lookups or several shifting and masking op-
erations, thus getting relatively slow, or the polygons need
to be rasterized vertically, which causes sub-optimal cache
performance.

However, when rasterizing antialiased polygons, one bit
in a scanline doesn’t map to one pixel on the screen, but

c© The Eurographics Association 2007.



K. Kallio / Scanline edge-flag algorithm for antialiasing

Figure 2: Optimal n-rooks pattern with 8, 16 and 32 sam-
ples per pixel.

to one sample within a pixel. By choosing suitably aligned
amount of samples per pixel — for instance 8, 16 or 32 — it
is possible to conveniently map the natural processsing units
of the CPU to screen pixels. Now the bits in each unit are not
seen as horizontal pixels next to each other, but as individual
samples within a pixel.

The fill operation when performed this way is still a scan
from left to right, but now instead of toggling individual pix-
els on or off, samples within a pixel are processed in parallel.
For even-odd fill rule, this can be achieved with the exclusive
or operation of the CPU.

3.3. Sampling pattern

Next step in extending the algorithm is choosing a suitable
sampling pattern. The quality measures for sampling pat-
terns have been researched mostly in the context of ray-
tracing. With ray-tracing it’s possible to choose unique sam-
pling pattern for each pixel. Here a constant sampling pattern
needs to used for the whole image.

A suitable pattern for the algorithm is n-rooks sampling
pattern, i.e. all sample points in the pattern are distributed
so that there is only one sample for each vertical and hori-
zontal row. This is sometimes referred as sparse supersam-
pling, for instance when used in InfiniteReality System by
SGI [MBDM97]. As aliasing is mostly visible in nearly hor-
izontal or nearly vertical edges, n-rooks pattern creates good
results with such edges while keeping the amount of samples
relatively low.

Since there are thousands of possible n-rooks configura-
tions, the problem is in finding the optimal one. Discrepancy
— as noted by Shirley [Shi91] — is a scalar measure of sam-
ple point equidistribution, and low discrepancy means better
sampling pattern. Since n-rooks patterns are snapped to the
sub-pixel grid, a relatively large set of sample configuration
produces the same lowest discrepancy. For finding the opti-
mal configuration from this set, stricter selection criteria is
used: the sum of the squares of the minimum distances be-
tween the sample points. By driving this as low as possible,
optimal n-rooks sampling patterns for 8, 16 and 32 samples
are produced, illustrated in figure 2.

Also Laine et al. have developed a method for generating
optimal sampling patterns [LA06]. This method however

assumes free sample positioning and different weights per
sample, and therefore can’t be applied directly here.

Since there is one sample per each sub-scanline, and the
subscanlines are evenly distributed, the pattern can be incor-
porated into the line plotting algorithm by modifying each
sample position with a subpixel value. As the edge plotter
is using a DDA, this adjustment is just a small offset value
added to the horizontal position. Note that coordinates in the
y direction need to be scaled by the amount of samples.

Algorithm 1 Plotting an edge with supersampling
1: o f f set[8]← 0.25,0.875,0.5,0.125,0.75,0.375,0,0.625
2: x← x0
3: for y← y0,y < y1,y← y+1 do
4: xi← FLOOR(x+o f f set[y mod 8])
5: bits[y][xi]← XOR(1,bits[y][xi])
6: x← x+dx
7: end for

Figure 3 illustrates the pixel access with the n-rooks sam-
pling pattern when using subpixel scanline offsets.

0.25

0.875

0.5

0.125

0.75

0.375

0.0

0.625

Figure 3: A) Polygon edge crossing the supersampling pat-
tern. B) Each scanline is offsetted by a fraction of a pixel to
make the rounding of the DDA to produce correct plot posi-
tions.

The fill operation doesn’t know about sample positions; it
just processes the data from left to right with XOR opera-
tion and generates a mask with one bit per sample for each
pixel. This mask can be used for two purposes: it can be ei-
ther converted to transparency by calculating the amount of
bits [And05] or it can be directly used as a coverage mask
with variants of A-buffer algorithm [Car84].

3.4. Non-zero winding rule

The algorithm presented this far already satisfies most of the
requirements for an antialiased polygon fill algorithm. How-
ever, it only supports even-odd fill rule. If the application re-
quires non-zero winding, plain edge-flag is not enough any-
more, as the single on/off bit doesn’t contain direction infor-
mation of the edge.

In even-odd fill rule, the color of a pixel is determined
by taking an infinite ray to arbitrary direction and calculat-
ing the amount of crossings it makes with polygon edges.

c© The Eurographics Association 2007.



K. Kallio / Scanline edge-flag algorithm for antialiasing

If the amount is odd, the pixel is filled, if it is even, the
pixel is empty. With non-zero winding rule, the check in-
cludes a counter for the direction of the edges. For each
clockwise edge, the value of the counter is increased and
for each counter clockwise edge, the value of the counter is
decreased. If the value of the counter is non-zero, the pixel
is filled, if it is zero, the pixel is empty.

Figure 4: Even-odd fillrule vs. non-zero winding fill rule.

The algorithm can be extended rather easily to support
non-zero winding fill rule. However, this is done at the cost
of memory usage. Non-zero winding requires that instead of
toggling a single bit on or off, a direction value of the edge
is accumulated to a larger variable.

The principle is the same as when drawing with edge
flags. The difference is that instead of just toggling a bit,
the edge direction value (+1 or -1) is added to a temporary
canvas during the edge plotting stage. The fill routine then
accumulates the values from the canvas to a temporary vari-
able, and whenever this changes to zero or away from zero,
a bit in the coverage mask is toggled.

A related winding counter method has been used by
Herf [Her97] for rendering soft shadow polygons. Also Aila
et al. [AM04] have used similar method for rendering masks
for occlusion culling.

When filling, processing the edge counters is much heav-
ier than just toggling the bits with exclusive or. Now there is
one temporary variable per sample instead of just one bit per
sample. However, it is possible to combine this with scan-
ning of the bit-per-sample buffer. This way it is possible to
make the heaviest part of the processing conditional.

Since keeping a full integer received for the winding
counter is not required in practice, it is possible to accom-
modate several values into a single variable. With 64 bits it’s
possible to represent 8 sample mask with 128 overlap levels.
This can provide a significant speed impact since 64 bits can
be processed with a single operation on some architectures.

In practice this is implemented by reserving an extra pad
bit for overflow at every 8th bit, thus giving 7 bit counters,
and keeping the pad bit empty by masking after the arith-
metic operations that may cause an overflow.

3.5. Larger convolution base

The basic version of the algorithm provides only box filtered
results. However, as the algorithm has a temporary canvas
with higher resolution, it is trivial to extend it to use larger
than one pixel weighted filter kernel for calculating the trans-
parency of the final output pixel. For instance a 2× 2 pixel
base for the filter can be implemented relatively easily with
table lookups.

A simple way to implement this is to process two scan-
lines in parallel, which means that each scanline will be pro-
cessed twice. Another option is to save the filled mask values
to a temporary buffer and re-use these when processing the
next scanline.

The algorithm can also be easily modified to use differ-
ent offset values for each color component, thus making the
rendered image crisper on color matrix displays such as LCD
panels [KdH03].

3.6. Scanline-oriented approach

The approach of using a large temporary canvas is not al-
ways possible. Especially if non-zero winding fill rule or
higher than 8× sampling is needed, the memory require-
ments of the buffer can be quite large. However, the algo-
rithm does the filling operation per scanline anyway, only
the edge plotting requires full height buffer. By adding an
edge table to keep track of the edges it’s possible to re-
duce the temporary canvas to have height of only one pixel.
Therefore, as the final extension to the algorithm, the con-
cept of large temporary canvas is replaced with a scanline-
based approach. The implementation is straightforward and
very similar to the classical scanline edge list fill algo-
rithm [FvDFH90]. The major difference is that there is no
need to keep the edges sorted. Also the amount of informa-
tion stored per edge is slightly larger here.

The edge table (ET) consists of an array of slots, one slot
per scanline of the target image. Furthermore, an active edge
table (AET), is used for tracking the currently active edges.
The edge table can be implemented most conveniently by
using a linked list of edge table nodes. Each node needs to
store the beginning and ending y scanlines in subpixel coor-
dinates, current x value and x increment per subpixel scan-
line. If non-zero winding fill rule is supported, also a value
for determining ascending/descending edge is needed.

When generating edges for a polygon, the starting y and
the ending y are the first and last full subpixel scanlines that
the edge crosses. The starting x is the x value at the cross-
ing of the first scanline, and the x increment is x1−x0

y1−y0
. The

ascending/descending value depends on the direction of the
edge. If y1 is smaller than y0, the direction value is set to -
1, and the start and end points are swapped so that the edge
initialization can be performed always assuming that y0 is
smaller than y1.

c© The Eurographics Association 2007.



K. Kallio / Scanline edge-flag algorithm for antialiasing

starting x

starting y(x
0
,y

0
)

(x
1
,y

1
)

x increment

ending y
{

Figure 5: Initializing the edge plotting procedure from the
endpoints of the edge.

Each edge is inserted to the edge table at a slot determined
by starting y. The value of starting y is divided by the sub-
pixel count (for instance 8) to get the correct slot. Note that
edges that don’t cross any scanlines are not inserted to the
edge table.

When a scanline is processed, edges from the ET at the
given scanline are moved to the AET. Then the edges in AET
are plotted for to the sub-scanlines of the scanline. When the
ending y of an edge is reached, the edge is discarded from
AET. Last, the fill operation is done for the scanline, and the
processing moves on to the next scanline.

3.7. Clipping

It is typical for polygon filling algorithms to require the in-
put polygons to be clipped to the canvas prior to the rasteri-
zation. This is also the case with this algorithm.

The clipping can be done with a general polygon clipper
if such is available. Since general polygon clipper that can
handle self-intersection and holes is quite complex to im-
plement, it is possible to bind the clipping operation to the
rasterization.

First, the edges need to be clipped to the top edge and
bottom edges of the clip rectangle. All edges that are com-
pletely above the top edge or below the bottom edge can be
ignored. If an edge is crossing the top of the clip rectangle,
a new x position should be calculated at the crossing and the
starting y value set to the top of the clip rectangle. For the
bottom edge, it is enough to set the ending y accordingly.

In horizontal direction, edges can’t be directly clipped
away. Instead, the edges that cross the left border should be
clamped to the minimum value and the edges that cross the
right border should be clamped to the maximum value. This
can be implemented by splitting the edges that cross the bor-
ders to diagonal and vertical parts. If simplicity is favored
over speed, it is possible to just add clamping comparisons
to the edge plotting loop.

3.8. Optimizations

The algorithm is presented here emphasizing the clarity. The
practical software implementation should consider some op-
timizations.

A. Fixed point arithmetic The DDA requires rational num-
bers, typically implemented using floating point arithmetic.
Although floating point arithmetic is fast with modern pro-
cessors, the floating point value needs to be converted to in-
teger whenever an edge is plotted. This can be a slow op-
eration, and much better results can be achieved by using
fixed point arithmetic in the DDA. Even then, since the stan-
dard float to integer conversion may involve a performance
hit on some processor architectures, better performance can
be achieved if the floating point conversions involved in the
initialization of the DDA are implemented with assembler.

B. Edge tracking The algorithm as presented this far per-
forms the filling for the full width and height of the canvas. A
very simple optimization to the algorithm is to add tracking
for polygon extents. If minimum and maximum top and bot-
tom values as well as minimum and maximum left and right
values for the edges per scanline are stored, the fill algorithm
can process only the area that is relevant for the polygon.

C. Mask tracking Typically the data at the temporary can-
vas is mostly zeros, as the data contains values only at the
polygon edges. The filler loop can take benefit of this, and
scan the data forward until a non-zero value is encountered.
The scanning operation can be split to three cases: if current
mask value is full coverage, the current color is applied di-
rectly to the target, if current mask is empty, pixels in the tar-
get are skipped, and if current mask has partial coverage, the
color is blended to the target with appropriate alpha value.
Whenever a non-zero value is encountered, only then is the
mask updated. Also, as the non-zero value gets detected any-
way, it is convenient to clear the value after it has been read.
This way there is no need to perform the clearing separately.

D. Loop unrolling Since the edge plotting operates along
scanlines, it is possible to unroll the plotting loops for full
scanlines (a constant size sequence of subpixel scanlines)
so that the plotted bit is defined with immediate data. De-
pending on the processor architecture, this can increase the
performance for a few percents.

E. Scanline-oriented approach Surprisingly, switching
from full buffer implementation to the scanline-oriented im-
plementation can also give some speed increase. This is due
to the cache behavior, as the scanline data can reside in the
processor cache while it is being plotted to and used for
filling. With the temporary canvas approach, especially the
edge plotting stage is not optimal considering the cache us-
age.

c© The Eurographics Association 2007.



K. Kallio / Scanline edge-flag algorithm for antialiasing

Performance comparison

32 samples AGG16 samples GDI+ no

antialiasing

GDI+ with

antialiasing

0%

100%

200%

300%

400%

500%

600%

700%

E
x
ec

u
ti

o
n
 t

im
e 

in
 r

el
at

io
n
 t

o
 8

x
 s

am
p
li

n
g

Synthetic test

Real life test

Synthetic test average

Real life test average

Total average

3
2
0
x
2
4
0

6
4
0
x
4
8
0

1
2
8
0
x
9
6
0

3
2
0
x
2
4
0

6
4
0
x
4
8
0

1
2
8
0
x
9
6
0

3
2
0
x
2
4
0

6
4
0
x
4
8
0

1
2
8
0
x
9
6
0

3
2
0
x
2
4
0

6
4
0
x
4
8
0

1
2
8
0
x
9
6
0

3
2
0
x
2
4
0

6
4
0
x
4
8
0

1
2
8
0
x
9
6
0

Figure 6: Results of the performance comparison between the scanline edge-flag algorithm, AGG and GDI+.

These optimizations are not processor specific but imple-
mentable with a high level language. In a performance-
critical real life situation, the inner loops can be imple-
mented directly with assembler language specific to the pro-
cessor architecture. Since the algorithm is simple at that
level, adding assembler optimizations is not an overwhelm-
ing task.

4. Results

The algorithm was implemented in C++ and compared
against two 2D vector graphic libraries, GDI+ and Antigrain
Geometry (AGG). GDI+ is a 2D rendering API developed by
Microsoft for Windows platform. AGG is a cross-platform
open source 2D rendering API focusing on performance and
high quality. Three versions of the scanline edge-flag algo-
rithm were evaluated in the comparisons; versions with 8,
16 and 32 sample points. GDI+ was evaluated both with and
without antialiasing.

The executables for the comparison were compiled with
Microsoft Visual Studio 7 Professional with identical op-
timization settings. The data sets for comparisons were
also identical. All test data was polygonal, bézier curves
were converted to polygons at load time to ensure identical
amount of subdivision. The tests were run on a laptop with
2.4 GHz Pentium 4 M processor and 1.2 GB of memory.

The test data set included 29 images, 20 synthetic tests
and 9 real-life images. The synthetic tests focused to bench-
mark the effects of one issue at a time, for instance num-
ber of edges, total length of edges or total filled area. The
set of test images for synthetic tests contained 10 images,
each was evaluated twice, once with even-odd fill rule and
once with non-zero winding fill rule. The real-life images
included vector illustrations with varying level of detail and
tests for character rendering.

4.1. Performance comparison

Performance comparison was executed for three resolutions,
320× 240, 640× 480 and 1280× 960. The test data was
scaled to the screen resolution, and rendered for 200 frames
while slowly modifying the translation and rotation. This
procedure made sure that the underlying library couldn’t use
any caching of the rendered image. The timing for the per-
formance included only the actual rendering calls, not the
time spent for instance in display update.

Figure 6 contains the data from the performance compar-
isons. The data points are scaled relative to the test executed
with 8× sampling, thus a value on the 100% line indicates
that the test in question executed in exactly the same time
as the same test with 8× sampling scanline edge-flag algo-
rithm.

c© The Eurographics Association 2007.



K. Kallio / Scanline edge-flag algorithm for antialiasing

Figure 7: Quality comparison of GDI+ non-antialiased, GDI+ antialiased, 8× sampling, 16× sampling, 32× sampling and
AGG. Comparison images are available at http://mlab.uiah.fi/~kkallio/antialiasing/

The performance tests indicate that on average the other
antialiasing algorithms require 2× to 3× as much time as
the scanline edge-flag algorithm. Even the version with 32
sample points per pixel is faster than the existing algorithms,
having about 1.5× execution time when comparing to the 8
sample point version.

Only implementation that competes in the same perfor-
mance range is non-antialiased rendering with GDI+. Even
in this comparison the 8× sampling version of the scanline
edge-flag algorithm is faster, especially when comparing the
performance with real-life images. The performance of the
non-antialiased GDI+ rendering is roughly equal to the 16×
sampling version.

It has to be noted that the variation within the relative exe-
cution times is rather high. This is due to the different nature
of the tests. The performance of the scanline edge-flag al-
gorithm excels with complex shapes with lots of antialiased
pixels. The difference in performance is not so great when
testing for instance fill rate with a simple square polygon, as
the performance inevitably becomes fill rate bound and the
differences between algorithms don’t have so big role.

4.2. Quality comparison

The image quality was evaluated from a subset of test im-
ages: one synthetic and two real-life images. The synthetic
image displays a star of altering black and white pattern. The
real-life images are vector graphic illustrations; one with low
amount of detail and the other with high amount of detail.

The star pattern reveals the differences between analytic

and sample-based approaches. The image rendered with
AGG has no artifacts that result from point sampling. (Al-
though not demonstrated in images here, it has to be noted
that AGG can produce severe artefacts in some cases, for in-
stance when edges are rendered on top of each other with
even-odd fill and the same vertex coordinates. This is prob-
ably due to the numerical problems with the analytical ap-
proach.)

The antialiased rendering with GDI+ reveals that the sam-
pling pattern is not a regular grid, but 8× 4 grid with only
4 samples vertically. This is especially visible with near-
horizontal edges: only four shades of grey are used for an-
tialiasing.

Because of the n-rooks sampling pattern, the scanline
edge-flag algorithm converts high frequencies to noise pat-
tern. This is apparent especially for the 8× sampling version.
When the number of samples increases, the results approach
the image produced with AGG.

For the real-life images the difference is not that obvious.
Basically all antialiasing improves the image quality dramat-
ically. A close look reveals that GDI+ has weaker antialias-
ing quality for the vertical direction, for instance with near-
horizontal lines and edges.

4.3. Conclusions

As a summary of the performance and quality comparisons,
it can be stated that the algorithm presented here performs
at least as fast as a standard non-antialiased algorithm, with
quality similar to a standard antialiased algorithm.

c© The Eurographics Association 2007.

http://mlab.uiah.fi/~kkallio/antialiasing/


K. Kallio / Scanline edge-flag algorithm for antialiasing

If the rendering quality with 8 samples is not enough for
demanding use cases, it is possible to reach a level of an-
tialiasing similar to an analytic approach — but still with
considerably better performance — by using a larger amount
of samples.

5. Discussion and future work

The algorithm is designed for software implementation. A
hardware implementation may need different design for best
performance, and this requires further research.

Although this paper addresses the topic only within the
field of 2D vector rendering, polygon filling algorithms are
relevant in other research topics as well, for instance in soft
shadow generation. Using this approach for polygon raster-
ization could produce better performance and quality of re-
sults also in those areas.

References

[AM04] AILA T., MIETTINEN V.: dPVS: an occlusion
culling system for massive dynamic environments. IEEE
Computer Graphics and Applications 24, 2 (2004), 86–
97.

[And05] ANDERSON S. E.: Bit twid-
dling hacks, 1997-2005. Available at
http://graphics.stanford.edu/˜seander/bithacks.html.

[AW81] ACKLAND B. D., WESTE N.: The edge flag al-
gorithm - a fill method for raster scan displays. IEEE
Trans. Computers 30, 1 (1981), 41–48.

[Cap03] CAPIN T. (Ed.): Mobile SVG Profiles: SVG Tiny
and SVG Basic. World Wide Web Consortium, January
2003. Available at http://www.w3.org/TR/SVGMobile/.

[Car84] CARPENTER L.: The A-buffer, an antialiased hid-
den surface method. In SIGGRAPH ’84: Proceedings of
the 11th annual conference on Computer graphics and in-
teractive techniques (New York, NY, USA, 1984), ACM
Press, pp. 103–108.

[Cat78] CATMULL E.: A hidden-surface algorithm with
anti-aliasing. In SIGGRAPH ’78: Proceedings of the 5th
annual conference on Computer graphics and interac-
tive techniques (New York, NY, USA, 1978), ACM Press,
pp. 6–11.

[Com89] COMMODORE-AMIGA, INC.: Amiga Hardware
Reference Manual, 1.3 ed., 1989.

[FFJ03] FERRAIOLO J., FUJISAWA J., JACKSON D.
(Eds.): Scalable Vector Graphics (SVG) 1.1 Specification.
World Wide Web Consortium, January 2003. Available at
http://www.w3.org/TR/SVG11/.

[FvDFH90] FOLEY J. D., VAN DAM A., FEINER S. K.,
HUGHES J. F.: Computer graphics: principles and prac-
tice (2nd ed.). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1990.

[Her88] HERSCH R.: Vertical scan-conversion for filling
purposes. In Proceedings CGInternational 88 (Geneva,
1988), Thalmann, (Ed.), Springer Verlag, pp. 318–327.

[Her97] HERF M.: Efficient Generation of Soft Shadow
Textures. Tech. Rep. CMU-CS-97-138, CS Dept.,
Carnegie Mellon U., May 1997.

[JC99] JOUPPI N. P., CHANG C.-F.: Z3: an economi-
cal hardware technique for high-quality antialiasing and
transparency. In HWWS ’99: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics
hardware (New York, NY, USA, 1999), ACM Press,
pp. 85–93.

[KdH03] KLOMPENHOUWER M., DE HAAN G.: Sub-
pixel image scaling for color-matrix displays. Journal of
the Society for Information Display 11, 1 (2003), 99–108.

[LA06] LAINE S., AILA T.: A weighted error metric and
optimization method for antialiasing patterns. Computer
Graphics Forum 25, 1 (2006), 83–94.

[LB05] LOOP C., BLINN J.: Resolution independent
curve rendering using programmable graphics hardware.
In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers (New
York, NY, USA, 2005), ACM Press, pp. 1000–1009.

[MBDM97] MONTRYM J. S., BAUM D. R., DIGNAM

D. L., MIGDAL C. J.: InfiniteReality: a real-time graph-
ics system. In SIGGRAPH ’97: Proceedings of the
24th annual conference on Computer graphics and in-
teractive techniques (New York, NY, USA, 1997), ACM
Press/Addison-Wesley Publishing Co., pp. 293–302.

[QMK06] QIN Z., MCCOOL M. D., KAPLAN C. S.:
Real-time texture-mapped vector glyphs. In SI3D ’06:
Proceedings of the 2006 symposium on Interactive 3D
graphics and games (New York, NY, USA, 2006), ACM
Press, pp. 125–132.

[Ric05] RICE D. (Ed.): OpenVG Specification Version
1.0. The Khronos Group Inc., July 2005. Available at
http://www.khronos.org/openvg/.

[Shi91] SHIRLEY P.: Discrepancy as a quality measure for
sample distributions. In Proceedings of Eurographics 91
(June 1991), pp. 183–193.

[SS93] SCHILLING A., STRASSER W.: EXACT: al-
gorithm and hardware architecture for an improved A-
buffer. In SIGGRAPH ’93: Proceedings of the 20th an-
nual conference on Computer graphics and interactive
techniques (New York, NY, USA, 1993), ACM Press,
pp. 85–91.

[WKP∗97] WINNER S., KELLEY M., PEASE B., RI-
VARD B., YEN A.: Hardware accelerated rendering of
antialiasing using a modified A-buffer algorithm. In SIG-
GRAPH ’97: Proceedings of the 24th annual conference
on Computer graphics and interactive techniques (New
York, NY, USA, 1997), ACM Press/Addison-Wesley Pub-
lishing Co., pp. 307–316.

c© The Eurographics Association 2007.

http://graphics.stanford.edu/~seander/bithacks.html
http://www.w3.org/TR/SVGMobile/
http://www.w3.org/TR/SVG11/
http://www.khronos.org/openvg/

