
��������	�
�������
��������������������������	���	

������������	�
��������������	�

Department of Computer and Information Sciences
University of Tampere, Finland

mturunen@cs.uta.fi, jh@cs.uta.fi

��	����

In this paper, we introduce an agent-based error handling ar-
chitecture for spoken dialogue systems. In this architecture,
all the parts of the error-handling process on the different in-
teraction levels (input, dialogue and output) are explicitly
modeled. Error handling is divided into individual, preferably
application independent components. The proposed architec-
ture makes it possible to construct adaptive and reusable error
handling components and entire error-handling toolkits. The
architecture is especially suitable for multilingual applica-
tions. The architecture is implemented as part of the Jaspis
speech application development environment and it uses
Jaspis’ agent-based interaction model.

��� ����
������

Errors are not uncommon in speech communication. Utter-
ances are frequently misheard, misunderstood or just missed.
It is often said that the major problem in speech applications
is their inability to detect and correctly handle different types
of errors. Thus, error management in spoken dialogue appli-
cations is crucial for successful interaction. However, most of
the current tools for speech application development do not
have decent support for error management and the task is left
to the application developer.

Error management is often understood as error recovery
only and is isolated from the dialogue with a user. Some er-
ror-handling solutions even try to hide the errors from the
other parts of the system. The first one of the three important
features which we see that an error handling architecture
should have, is that error handling should be seen as a part of
the dialogue flow and used as a part of it.

Error handling can also enormously increase the com-
plexity of interaction, especially dialogue management, and
lead to complex and problematic structures. Thus, the second
feature of error handling architecture is that we must support
modular components that take care of error handling inde-
pendently from the main dialogue flow.

Error management is not dialogue level issue only. In-
stead, different parts of the error management process can be
found on different levels of interaction processing. Duff et al.
[1] have analyzed error management and found five different
phases that take place in the input, dialogue and output parts
of a speech system. Therefore, the third feature is that in order
to successfully handle errors, a speech system must support
all phases of the error handling process on the different inter-
action levels.

In this paper, we introduce an error handling architecture
that supports the three features of error management as de-
scribed above. Error management is divided into several
phases that provide an explicit and modular view to the error
management process. Software components called agents,

evaluators and managers are used to handle errors on input,
dialogue and output levels. The architecture is realized as a
part of the Jaspis speech application platform [2]. Jaspis
makes it possible to build adaptive, modular and in many
cases application independent and multilingual error handling
components and even complete error handling toolkits for
speech applications.

We begin by giving a brief overview of error management
in speech systems. After that we introduce the most important
features of the Jaspis framework, which should help under-
stand the realization of the error-handling model. Then the
realization of the error management architecture in Jaspis is
explained step by step. After that we explain how the pro-
posed architecture could be used in real world applications.
Finally, we draw conclusions and make suggestions for future
work.

��� ������
��������������������������	

Error management has usually been separated into error de-
tection and error correction. Duff et al. have presented a more
detailed four level model of error correction [1] in their 1996
work and later [3] added an additional step. The phases are
	����� �	�	�����, ���������� ��� ����	, ��������� �� �	����, 	�	�
������� ��	��	���� and ������	������	����� ��� ��	�������������
����	. We feel that their last phase is rather complex and in-
stead suggest two separate phases, which are ���������� ��	
��	� and ������	������	����������	����������������	. We have
also included error prevention as an additional phase.

Based on the above discussion we suggest that the fol-
lowing seven phases must be included in the error manage-
ment architecture:

1. �������	�	�����. The system detects an error or de-
tects that the user tried to correct an error that oc-
curred earlier. Especially semantic errors need
automatic error detection methods.

2. �����������������	. The system analyses the causes
that led to the error and informs the rest of the sys-
tem so that it can better correct the error and pre-
vent further errors from occurring.

3. ���������������	�����. The system decides how to
handle the error, i.e., chooses the proper error cor-
rection strategy.

4. ��	������� ��	�����	�����. The system uses an error
correction method, such as selection from a list, to
correct the error.

5. ������������	���	��� ���� ��	�	����. The system in-
forms the user about the error, if necessary, and
about the reasons that led to the error. The user is
also informed what is going to happen next.

6. !�����	� ���� �	����� ��� ��	� �������� �������	. After
error correction the system chooses how to return to
the primary dialogue.

7. ��	"	������ ������. In some cases, the system can
modify its behavior to better match the user’s ac-
tions and prevent further errors from occurring.

��� �	��	���
���	������������!�
��

The Jaspis framework is a general speech application devel-
opment platform. Here, we describe only the components
needed to understand the realization of the error-handling
model in Jaspis. A more comprehensive description of the
general Jaspis architecture and its adaptive interaction model
can be found in our previous paper [2].

�����"������#�������	

The general idea of the Jaspis interaction model is based on
distributing the different parts of the interaction process into
independent units that are specialized in small tasks. There
can, however, be several alternative implementations for the
same tasks. These implementation units are called ��	���. To
select the most suitable agent for each situation Jaspis uses
	"��������# For coordinating the interaction it uses �����	��.
This is illlustrated in Figure 1.

Interaction Manager

Communication
Management

Dialogue
Management

Presentation
Management

Input
Agents

Input
Evaluators

Dialogue
Evaluators

Dialogue
Agents

Presentation
Evaluators

Presentation
Agents

$������% Main components of the Jaspis architecture.

!������������������	� controls inputs, ��	�	������������
��	� controls outputs and �������	� �����	� controls dia-
logue flow. ���	�������������	� takes care of overall coordi-
nation of the different managers. All these components con-
tribute to the error management and therefore their principal
ideas are briefly described in the following sections.

All dynamic information is stored in ������������������	
(blackboard type shared memory). Every component of the
system has access to all of the information. Using shared in-
formation we can use contextual information to adapt interac-
tion for different users and situations. This is needed, for ex-
ample, in handling non-trivial error situations.

�����&�������������!���������

Communication management takes care of all input and out-
put between the user and the system on the technical I/O
level. It also uses ��������	��� to interpret the inputs received
from the input devices. Each agent is specialized in one part
of the input processing and can use the other agents’ output in
their own processing. Input agents do not only process input
after they have received the entire input from a device but also
during the input processes. This way an agent can give feed-
back to a device while input is still being received. This can
be used e.g. to control a speech recognizer.

������	"�������� are used to combine and further evaluate
inputs processed by input agents. They also handle multimo-
dal inputs i.e. combine inputs from different modalities and
decide when to stop gathering more inputs.

Input agents and input evaluators can be used to take care
of all input level error handling tasks and implement error
detection and error diagnosis components.

��������������!���������

Dialogue management is the component that controls the flow
of the dialogue. It uses interpreted and conceptualized input
messages produced by the communication manager as its in-
puts and produces conceptual output messages to the presen-
tation component as its outputs. �������	� ��	��� do the ac-
tual work of the dialogue manager. The dialogue flow is split
among the different agents. There are different agents that
specialize in different dialogue situations. There can also be
several agents that can take care of the same situation but in
different ways. For example, some agents can be more system
initiative while others may let the user take the initiative. In
this way, we can also provide alternative error correction
strategies in an adaptive manner.

Since we have both complementary and alternative
agents, �������	� 	"�������� are used to evaluate how well
each agent suits the current situation. There are several evalu-
ators and each evaluates just one aspect of agents’ suitability.
Evaluators specialized in error handling know which error
correction agents can be used in different error situations.

��'�� #�	���������!���������

Presentation management takes care of generating outputs to
the user. Dialogue management produces output messages in
a conceptual form. The final, lingual form of these messages
is constructed in presentation management. This lingual form
is generated to speech and played to the user by the commu-
nication manager.

The ��	�	����������	��� do the actual language generation
in the presentation component. Presentation management
contains different agents for different kinds of output mes-
sages and there can also be several agents that can speak out
the same message but in different ways. The agents can use all
the information in the information storage. ��	�	�������
	"�������� select the best presentation agent for each situa-
tion. In error handling we use specialized agents and evaluat-
ors, which handle error-related speech outputs.

Interaction Manager

Communication
Management

Dialogue
Management

Presentation
Management

Error Handling Process

1.Error
Detection

3.Planning
Correction

4.Executing
Correction

2.Diagnosis
of Cause

5.Informing
User

7. Preventing errors

Input
Agents

Present-
ation
Evaluators

Present-
ation

Agents

Input
Evaluators

6.Closure
and Return

Dialogue
Agents

Dialogue
Evaluators

$������% Error handling in Jaspis.

'�� ������
�������� �	��	

Next we describe how the error management architecture can
be realized using the Jaspis framework. Figure 2 presents this
realization. We show that it is possible to construct applica-
tion independent and reusable error handling components. If
necessary, application dependent components can also be
built to maximize the quality of the system.

'����������������

Error detection components can be implemented in Jaspis as
input agents. We can write several small input agents for dif-
ferent kinds of errors and reuse these in different applications.
It is also possible to write application dependent agents and
keep their implementation separate from the application inde-
pendent ones.

Recognition of an error can be done by the user or by the
system. There are several ways the input agents can try to rec-
ognize an error. In the simplest cases it is possible to look at
the recognition result confidence scores and use certain
threshold levels etc. We can also use several different speech
recognizers and compare the results. For example, input
agents can use several different speech recognizers, such as a
combination of normal, restricted vocabulary recognizer and
an unrestricted vocabulary phoneme recognizer [4]. Input
agents are also utilized when the user recognizes errors and
acts to correct them. These error detection agents can use pa-
rameters such as content and duration [5] or prosodic features
[6] of the user responses.

'���� �
����(���������&��	���(�������

Input evaluators are used as error reasoning components.
They try to reason the cause of an error. The cause of the error
reported by the user can also be reasoned. We can write sepa-
rate evaluators for this task. These processes can include
complex combination of different information sources, such
as user model and dialogue history. We can also use multi-
modal information in cases where such information is avail-
able.

'������	����������&�������

Since the error correction is basically about changing the
route of the dialogue, the error repair design is a task for the
dialogue evaluators. Special evaluators check the type of the
error, dialogue state and information of past errors and repairs
and choose the best possible dialogue agent available.

One important part of the error correction design is
avoiding error spirals, where an error correction procedure
leads to another error. If the current error is followed with the
very same error correction procedure, we can end up in end-
less loops of similar error/error correction combinations.
Therefore, one dialogue evaluator needs to see what kinds of
error repairs have been done in this dialogue and with what
results, to be able to terminate possible error cycles. This
evaluator can be one of the application independent reusable
components.

'�'�����&�������

The error correction is usually a small dialogue itself. This
can be a single confirmation, for example, a yes/no question
or a selection from a short list. In some cases the dialogue
agents can even completely ignore the error correction proce-
dures. In these cases it is the task of the presentation agents to
inform the user about the situation.

The dialogue agents allow us to implement the correction
dialogues in separate dialogue agents. These can be independ-
ent of the agents that implement the main dialogue. This
keeps the dialogue agents very simple and easy to write and
maintain.

It is also possible to write error correction dialogues that
are application independent. This naturally requires separate
dialogue and concept models from where the conceptual out-
put messages can be constructed. However, if such models are
used, we can re-use the error correction dialogue agents.

'�)�� ��(����������*	�

Special presentation agents and evaluators handle all speech
outputs related to the error management. First, we have spe-
cialized presentation agents for error handling output. This
way we can construct application independent agents which
present all error situations to the user (though some of the
agents may be application dependant if needed).

We can also have separate presentation agents for the
situations where error correction has finished and we need to
inform the user about that. These agents can be easily imple-
mented by extending the basic agents by adding the additional
information to the behavior inherited from the original agent.
A specialized evaluator then selects these agents when
needed.

'�+��,������������#�������������

When an error correction dialogue is finished, we need to
return to the original dialogue. Since the situation may have
changed dramatically we may need to adjust the original dia-
logue flow. The selection of the following dialogue step is up
to the dialogue evaluators. They should select the next dia-
logue agent suitable to carry on from the current situation.

'�-�� #�.���������	

Error prevention can take place in all interaction levels. When
dealing with speech inputs we can have specialized input
agents and evaluators that try to reduce errors by controlling
input devices and utilize information from previous error
situations. For example, if we detect that we are having many
recognition errors we can reduce the size of the recognition
vocabulary or use alternative vocabularies.

On the dialogue level, we can provide alternative dialogue
agents to be more fail-safe for users with a lot of errors. These
dialogues are not usually very efficient, but in problematic
situations they can be the only choice for successful interac-
tion.

Special output agents can be designed to provide alterna-
tive information in situations where errors are likely to ap-
pear. It is the duty of presentation evaluators to check if the
user needs these agents.

)�� ���
�������	����#�������������������	

To make our ideas more concrete we present examples of how
the proposed architecture can be used to handle errors in real-
world applications. The architecture is available as a part of
the Jaspis distribution. We have used Jaspis to construct sev-
eral applications, including e-mail application ������� [7],
bus timetable information service $����� and speech-based
ubiquitous computing environment �������. All of these
applications have very different logic behind them and espe-
cially different dialogue control strategies (state-based and
form-based). Still, the same error handling methods and com-
ponents can be used in all of these applications.

Error detection agents have close connection to the
speech recognition engine. Basic agents can operate without
any domain knowledge by just using the recognition results

from recognizers. Different recognizers (word-spotting, dicta-
tion etc.) can have different agents.

More advanced error detection agents can utilize context
knowledge (dialogue history, user model) to detect possible
errors. For example, an agent can check if the result is mean-
ingful in the current context. In an e-mail application, it can
find out that there are only four e-mails in the second folder
although the recognizer has produced “%	��� ������ 	�����”.
This is a possible error situation and should be noted. Simi-
larly, if the user uses alternative input mechanisms (such as
rings doorbell several times), the error detection agent can
alert the system that the recognizer is not performing well.

The error reasoning components, input evaluators, are
used to reason the consequences that have caused the error.
For example, if an error detection agent has spotted a possible
error but the recognition confidence scores are good we can
conclude that the error is semantic, i.e., the user is disoriented
or has simply used the wrong words. This should be handled
on the dialogue level.

When choosing a dialogue strategy to handle an error,
domain independent components can be used to choose the
proper error-handling agent. For example, “yes/no” confirma-
tions can be used when we have only two possible choices.
Different agents, for example those implementing selections
from a list can be used when we have several choices etc.
These kind of basic strategies can handle most situations in a
domain independent way. Other dialogue agents, implement-
ing the main dialogue management does not need to handle
any error issues. However, as in all cases, agents with domain
knowledge can be added. For example, if in the bus time table
system we want to clarify, which district the user wants to go
to, we can use a special agent for this purpose, instead of pre-
senting a list of bus-numbers from the recognizer vocabulary.

When using the agent-based error handling in dialogue
management, the error correction procedure is performed like
a normal dialogue and if more errors occur during the correc-
tion dialogue, they can be processed the same way as normal
errors. This makes the dialogue agents simpler and easier to
implement. Furthermore, different dialogue management
strategies, such as user-initiative and system-initiative strate-
gies can be used for different users. This makes it possible to
utilize the benefits of different dialogue management strate-
gies [8].

In multilingual applications, language dependant parts
should be modularized and separated from language inde-
pendent components. Most importantly, the handling of in-
puts and outputs should not be processed in dialogue man-
agement. To support multiple languages efficiently, architec-
ture should contain two kinds of components. First, it should
support components for different languages. Second, it should
support shared components between languages. The proposed
error handling architecture is designed and implemented with
these in mind.

+�� &�����	���	���
�$�����/��

We have presented an advanced error-handling architecture
for spoken dialogue applications. In this model the error han-
dling process is divided into modular components, which deal
with different the phases of error handling in a coordinated
way. The proposed architecture operates on input, dialogue
and output handling levels. Most of the error handling com-
ponents can be application independent, but application de-
pendent components can be easily added. We also introduced

how the proposed model is realized in the Jaspis speech ap-
plication development environment and gave examples on
how the architecture can be used in practical applications.

The presented model does not define what kind of tech-
niques we should use in error handling. In this sense it com-
plements other error handling models and techniques, such as
those presented in [9]. Future work includes the implementa-
tion of a number of error handling components for different
situations. We would also like to evaluate the usefulness of
this approach using real-world user tests. Since the usefulness
of error handling is very hard to measure, we will try different
dialogue based metrics, such as those suggested in [10]. We
hope to be able to release a common, reusable and extendable
error-handling toolbox for the development of speech appli-
cations.

-�� �����0��
������

This work was supported by the Academy of Finland (project
163356) and by the National Technology Agency (Tekes).

1�� ,�(�����	

[1] Duff, D., Gates B., and Luperfoy S., "An Architecture for
Spoken Dialogue Management", 6th International Confer-
ence on Speech and Language Processing, ICSLP 1996,
pp. 1025-1028.

[2] Turunen, M. and Hakulinen, J. "Jaspis - A Framework for
Multilingual Adaptive Speech Applications", 6th Interna-
tional Conference on Speech and Language Processing,
ICSLP 2000.

[3] Luperfoy S. and Duff D., "Questions Regarding Repair
Dialogs". CHI'97 Speech User Interface Design Chal-
lenges Workshop Position Paper.

[4] Gustafson, J., Lundeberg, M., and Liljencrants, J., "Expe-
riences from the development of August - a multi-modal
spoken dialogue system", ESCA tutorial and research
workshop on Interactive Dialogue in Multi-Modal Sys-
tems, IDS’99.

[5] Hirasawa, J.-I., Miyazaki, N., Nakano, M. and Aikawa,
K., "New Feature Parameters For Detecting Misunder-
standings in a Spoken Dialogue System", 6th International
Conference of Spoken Language Processing, ICSLP
2000.

[6] Litman, D., Hirschberg, J. and Swerts, M., "Predicting
automatic speech recognition performance using prosodic
cues", 1st Conference of the North American Chapter of
the Association for Computational Linguistics, NAACL
2000.

[7] Turunen, M. and Hakulinen, J., "Mailman - a Multilin-
gual Speech-only E-mail Client Based on an Adaptive
Speech Application Framework", Workshop on Multi-
Lingual Speech Communication, 2000.

[8] Walker, M., Fromer, J., Fabbrizio, G., Mestel, C. and
Hindle, D., "What can I say?: Evaluating a spoken lan-
guage interface to Email". ACM CHI ‘98. pp. 582–589.

[9] Suhm, B., Myers, B. and Waibel, A. "Interactive Recov-
ery From Speech Recognition Errors", 4th International
Conference on Speech and Language Processing, ICSLP
1996, pp. 865-868.

[10] Glass, J., Polifroni, J., Seneff, S. and Zue, V., "Data Col-
lection and Performance Evaluation of Spoken Dialogue
Systems: The MIT Experience", 6th international Confer-
ence of Spoken Language Processing, ICSLP 2000.

